Using Domain-Knowledge to Assist Lead Discovery in Early-Stage Drug Design

Author:

Dash TirtharajORCID,Srinivasan Ashwin,Vig Lovekesh,Roy Arijit

Abstract

AbstractWe are interested in generating new small molecules which could act as inhibitors of a biological target, when there is limited prior information on target-specific inhibitors. This form of drug-design is assuming increasing importance with the advent of new disease threats for which known chemicals only provide limited information about target inhibition. In this paper, we propose the combined use of deep neural networks and Inductive Logic Programming (ILP) that allows the use of symbolic domain-knowledge (B) to explore the large space of possible molecules. Assuming molecules and their activities to be instances of random variables X and Y, the problem is to draw instances from the conditional distribution of X, given Y, B (DX|Y,B). We decompose this into the constituent parts of obtaining the distributions DX|B and DY|X,B, and describe the design and implementation of models to approximate the distributions. The design consists of generators (to approximate DX|B and DX|Y,B) and a discriminator (to approximate DY|X,B). We investigate our approach using the well-studied problem of inhibitors for the Janus kinase (JAK) class of proteins. We assume first that if no data on inhibitors are available for a target protein (JAK2), but a small numbers of inhibitors are known for homologous proteins (JAK1, JAK3 and TYK2). We show that the inclusion of relational domain-knowledge results in a potentially more effective generator of inhibitors than simple random sampling from the space of molecules or a generator without access to symbolic relations. The results suggest a way of combining symbolic domain-knowledge and deep generative models to constrain the exploration of the chemical space of molecules, when there is limited information on target-inhibitors. We also show how samples from the conditional generator can be used to identify potentially novel target inhibitors.

Publisher

Cold Spring Harbor Laboratory

Reference41 articles.

1. Rethinking drug design in the artificial intelligence era;Nature Reviews Drug Discovery,2020

2. The ChEMBL database in 2017

3. Cheaper faster drug development validated by the repositioning of drugs against neglected tropical diseases;Journal of the Royal society Interface,2015

4. Dash, T. , Srinivasan, A. , Baskar, A. : Inclusion of domain-knowledge into gnns using mode-directed inverse entailment. ArXiv abs/2105.10709 (2021)

5. Inverse entailment and progol

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3