Molecular evolution and structural analyses of the spike glycoprotein from Brazilian SARS-CoV-2 genomes: the impact of the fixation of selected mutations

Author:

Ferrareze Patrícia Aline GröhsORCID,Zimerman Ricardo ArielORCID,Franceschi Vinícius BonettiORCID,Caldana Gabriel DickinORCID,Netz Paulo AugustoORCID,Thompson Claudia ElizabethORCID

Abstract

ABSTRACTThe COVID-19 pandemic caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached by July 2021 almost 200 million cases and more than 4 million deaths worldwide since its beginning in late 2019, leading to enhanced concern in the scientific community and the general population. One of the most important pieces of this host-pathogen interaction is the spike protein, which binds to the human Angiotensin-converting enzyme 2 (hACE2) cell receptor, mediates the membrane fusion and is the major target of neutralizing antibodies against SARS-CoV-2. The multiple amino acid substitutions observed in this region, specially in the Receptor Binding Domain (RBD), mainly after almost one year of its emergence (late 2020), have enhanced the hACE2 binding affinity and led to several modifications in the mechanisms of SARS-CoV-2 pathogenesis, improving the viral fitness and/or promoting immune evasion, with potential impact in the vaccine development. In this way, the present work aimed to evaluate the effect of positively selected mutations fixed in the Brazilian SARS-CoV-2 lineages and to check for mutational evidence of coevolution. Additionally, we evaluated the impact of selected mutations identified in some of the VOC and VOI lineages (C.37, B.1.1.7, P.1, and P.2) of Brazilian samples on the structural stability of the spike protein, as well as their possible association with more aggressive infection profiles by estimating the binding affinity in the RBD-hACE2 complex. We identified 48 sites under selective pressure in Brazilian spike sequences, 17 of them with the strongest evidence by the HyPhy tests, including VOC related mutation sites 138, 142, 222, 262, 484, 681, and 845, among others. The coevolutionary analysis identified a number of 28 coevolving sites that were found not to be conditionally independent, such as the couple E484K - N501Y from P.1 and B.1.351 lineages. Finally, the molecular dynamics and free energy estimates showed the structural stabilizing effect and the higher impact of E484K for the improvement of the binding affinity between the spike RBD and the hACE2 in P.1 and P.2 lineages, as well as the stabilizing and destabilizing effects for the positively selected sites.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3