Abstract
AbstractAlthough the myotendinous junction (MTJ) is essential for skeletal muscle integrity, its contribution to skeletal muscle function remains largely unknown. Here, we show that CRISPR-Cas9-mediated gene ablation of the MTJ marker col22a1 in zebrafish identifies two distinctive phenotypic classes: class 1 individuals reach adulthood with no overt muscle phenotype while class 2 display severe movement impairment and eventually dye before metamorphosis. Yet mutants that are unequally affected are all found to display defective force transmission attributed to a loss of ultrastructural integrity of the MTJ and myosepta, though with distinct degrees of severity. The behavior-related consequences of the resulting muscle weakness similarly reveal variable phenotypic expressivity. Movement impairment at the critical stage of swimming postural learning eventually causes class 2 larval death by compromising food intake while intensive exercise is required to uncover a decline in muscle performance in class 1 adults. By confronting MTJ gene expression compensation and structural, functional and behavioral insights of MTJ dysfunction, our work unravels variable expressivity of col22a1 mutant phenotype. This study also underscores COL22A1 as a candidate gene for myopathies associated with dysfunctional force transmission and anticipates a phenotypically heterogeneous disease.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献