In-situ genomic prediction using low-coverage Nanopore sequencing

Author:

Lamb Harrison J.ORCID,Hayes Ben J.ORCID,Randhawa Imtiaz A. S.ORCID,Nguyen Loan T.ORCID,Ross Elizabeth M.

Abstract

AbstractMost traits in livestock, crops and humans are polygenic, that is, a large number of loci contribute to genetic variation. Effects at these loci lie along a continuum ranging from common low-effect to rare high-effect variants that cumulatively contribute to the overall phenotype. Statistical methods to calculate the effect of these loci have been developed and can be used to predict phenotypes in new individuals. In agriculture, these methods are used to select superior individuals using genomic breeding values; in humans these methods are used to quantitatively measure an individual’s disease risk, termed polygenic risk scores. Both fields typically use SNP array genotypes for the analysis. Recently, genotyping-by-sequencing has become popular, due to lower cost and greater genome coverage (including structural variants). Oxford Nanopore Technologies’ (ONT) portable sequencers have the potential to combine the benefits genotyping-by-sequencing with portability and decreased turn-around time. This introduces the potential for in-house clinical genetic disease risk screening in humans or calculating genomic breeding values on-farm in agriculture. Here we demonstrate the potential of the later by calculating genomic breeding values for four traits in cattle using low-coverage ONT sequence data and comparing these breeding values to breeding values calculated from SNP arrays. At sequencing coverages between 2X and 4X the correlation between ONT breeding values and SNP array-based breeding values was > 0.92 when imputation was used and > 0.88 when no imputation was used. With an average sequencing coverage of 0.5x the correlation between the two methods was between 0.85 and 0.92 using imputation, depending on the trait. This demonstrates that ONT sequencing has great potential for in clinic or on-farm genomic prediction.Author SummaryGenomic prediction is a method that uses a large number of genetic markers to predict complex phenotypes in livestock, crops and humans. Currently the techniques we use to determine genotypes requires complex equipment which can only be used in laboratories. However, Oxford Nanopore Technologies’ have released a portable DNA sequencer, which can genotype a range of organisms in the field. As a result of the device’s higher error rate, it has largely only been considered for specific applications, such as characterising large mutations. Here we demonstrated that despite the devices error rate, accurate genomic prediction is also possible using this portable device. The ability to accurately predict complex phenotypes such as the predisposition to schizophrenia in humans or lifetime fertility in livestock in-situ would decrease the turnaround time and ultimately increase the utility of this method in the human clinical and on-farm settings.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3