Abstract
AbstractDysregulation of HDAC4 expression and/or subcellular distribution results in impaired neuronal morphogenesis and long-term memory in Drosophila melanogaster. A recent genetic screen for genes that interact in the same molecular pathway as HDAC4 identified the cytoskeletal adapter Ankyrin2 (Ank2). Here we sought to investigate the role of Ank2 in neuronal morphogenesis, learning and memory, and to examine the nature of interaction with HDAC4. We found that Ank2 is expressed widely throughout the Drosophila brain where it localizes predominantly to axon tracts. Pan-neuronal knockdown of Ank2 in the mushroom body, a region critical for memory formation, resulted in defects in axon morphogenesis, and similarly reduction of Ank2 in lobular plate tangential neurons of the optic lobe disrupted dendritic branching and arborization. Conditional knockdown of Ank2 in the mushroom body of adult Drosophila significantly impaired long-term courtship memory, and this requirement for Ank2 was isolated to gamma (γ) neurons of the mushroom body. As overexpression of HDAC4 in γ neurons also impairs the formation of long-term courtship memory, this suggests that any functional relationship between these proteins during LTM likely occurs in γ neurons. We determined that the genetic interaction requires the presence of nuclear HDAC4 and is not dependent on a conserved putative ankyrin-binding motif present in HDAC4. In summary, we provide the first characterization of the expression pattern of Ank2 in the adult Drosophila brain and demonstrate that Ank2 is critical for morphogenesis of the mushroom body and for the molecular processes required in the adult brain for formation of long-term memories.
Publisher
Cold Spring Harbor Laboratory