Author:
Hashim Samy,Farooq Sally,Syriopoulos Eleni,Cremer Kai de la Lande,Vogt Alexander,de Jong Nol,Aguado Victor L.,Popescu Mihai,Mohamed Ashraf K.,Amin Muhamed
Abstract
AbstractThe COVID-19 pandemic has presented a series of new challenges to governments and health care systems. Testing is one important method for monitoring and therefore controlling the spread of COVID-19. Yet with a serious discrepancy in the resources available between rich and poor countries not every country is able to employ widespread testing. Here we developed machine learning models for predicting the number of COVID-19 cases in a country based on multilinear regression and neural networks models. The models are trained on data from US states and tested against the reported infections in the European countries. The model is based on four features: Number of tests Population Percentage Urban Population and Gini index. The population and number of tests have the strongest correlation with the number of infections. The model was then tested on data from European countries for which the correlation coefficient between the actual and predicted cases R2 was found to be 0.88 in the multi linear regression and 0.91 for the neural network model. The model predicts that the actual number of infections in countries where the number of tests is less than 10% of their populations is at least 26 times greater than the reported numbers.
Publisher
Cold Spring Harbor Laboratory