Predicting protein domain temperature adaptation across the prokaryote-eukaryote divide

Author:

Jensen Sarah E.ORCID,Johnson Lynn C.ORCID,Casstevens TerryORCID,Buckler Edward S.ORCID

Abstract

AbstractProtein thermostability is important for fitness but difficult to measure across the proteome. Fortunately, protein thermostability is correlated with prokaryote optimal growth temperatures (OGTs), which can be predicted from genome features. Models that can predict temperature sensitivity across the prokaryote-eukaryote divide would help inform how eukaryotes adapt to elevated temperatures, such as those predicted by climate change models. In this study we test whether prediction models can cross the prokaryote-eukaryote divide to predict protein stability in both prokaryotes and eukaryotes. We compare models built using a) the whole proteome, b) Pfam domains, and c) individual amino acid residues. Proteome-wide models accurately predict prokaryote optimal growth temperatures (r2 up to 0.93), while site-specific models demonstrate that nearly half of the proteome is associated with optimal growth temperature in both Archaea and Bacteria. Comparisons with the small number of eukaryotes with temperature sensitivity data suggest that site-specific models are the most transferable across the prokaryote-eukaryote divide. Using the site-specific models, we evaluated temperature sensitivity for 323,850 amino acid residues in 2,088 Pfam domain clusters in Archaea and Bacteria species separately. 59.0% of tested residues are significantly associated with OGT in Archaea and 75.2% of tested residues are significantly associated with OGT in Bacteria species at a 5% false discovery rate. These models make it possible to identify which Pfam domains and amino acid residues are involved in temperature adaptation and facilitate future research questions about how species will fare in the face of increasing environmental temperatures.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3