Parental origin of Gsα inactivation differentially affects bone remodeling in a mouse model of Albright hereditary osteodystrophy

Author:

McMullan PatrickORCID,Maye Peter,Yang Qingfen,Rowe David W.,Germain-Lee Emily L.ORCID

Abstract

AbstractAlbright hereditary osteodystrophy (AHO) is caused by heterozygous inactivation of GNAS, a complex locus that encodes the alpha-stimulatory subunit of GPCRs (Gsα) in addition to NESP55 and XLαs due to alternative first exons. AHO skeletal manifestations include brachydactyly, brachymetacarpia, compromised adult stature, and subcutaneous ossifications. AHO patients with maternally-inherited GNAS mutations develop pseudohypoparathyroidism type 1A (PHP1A) with resistance to multiple hormones that mediate their actions through GPCRs requiring Gsα (eg., PTH, TSH, GHRH, calcitonin) and severe obesity. Paternally-inherited GNAS mutations cause pseudopseudohypoparathyroidism (PPHP), in which patients have AHO skeletal features but do not develop hormonal resistance or marked obesity. These differences between PHP1A and PPHP are caused by tissue-specific reduction of paternal Gsα expression. Previous reports in mice have shown loss of Gsα causes osteopenia due to impaired osteoblast number and function and suggest AHO patients could display evidence of reduced bone mineral density (BMD). However, we previously demonstrated PHP1A patients display normal-increased BMD measurements without any correlation to body mass index or serum PTH. Due to these observed differences between PHP1A and PPHP, we utilized our laboratory’s AHO mouse model to address whether Gsα heterozygous inactivation by the targeted disruption of exon 1 of Gnas differentially affects bone remodeling based on the parental inheritance of the mutation. Mice with paternally-inherited (GnasE1+/−p) and maternally-inherited (GnasE1+/−m) mutations displayed reductions in osteoblasts along the bone surface compared to wildtype. GnasE1+/−p mice displayed reduced cortical and trabecular bone parameters due to impaired bone formation and excessive bone resorption. GnasE1+/−m mice however displayed enhanced bone parameters due to increased osteoblast activity and normal bone resorption. These distinctions in bone remodeling between GnasE1+/−p and GnasE1+/−m mice appear to be secondary to changes in the bone microenvironment driven by calcitonin-resistance within GnasE1+/−m osteoclasts and therefore warrant further studies into understanding how Gsα influences osteoblast-osteoclast coupling interactions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3