Barcode Fusion Genetics-Protein-fragment Complementation Assay (BFG-PCA): tools and resources that expand the potential for binary protein interaction discovery

Author:

Evans-Yamamoto DanielORCID,Rouleau François D.ORCID,Nanda Piyush,Makanae KojiORCID,Liu Yin,Després Philippe C.ORCID,Matsuo HitoshiORCID,Seki MotoakiORCID,Dube Alexandre K.,Ascencio Diana,Yachie NozomuORCID,Landry Christian R.ORCID

Abstract

ABSTRACTBarcode fusion genetics (BFG) utilizes deep sequencing to improve the throughput of protein-protein interaction (PPI) screening in pools. BFG has been implemented in Yeast two-hybrid (Y2H) screens (BFG-Y2H). While Y2H requires test protein pairs to localize in the nucleus for reporter reconstruction, Dihydrofolate Reductase Protein-Fragment Complementation Assay (DHFR-PCA) allows proteins to localize in broader subcellular contexts and proves to be largely orthogonal to Y2H. Here, we implemented BFG to DHFR-PCA (BFG-PCA). This plasmid-based system can leverage ORF collections across model organisms to perform comparative analysis, unlike the original DHFR-PCA that requires yeast genomic integration. The scalability and quality of BFG-PCA were demonstrated by screening human and yeast interactions for >11,000 protein pairs. BFG-PCA showed high-sensitivity and high-specificity for capturing known interactions for both species. BFG-Y2H and BFG-PCA capture distinct sets of PPIs, which can partially be explained based on the domain orientation of the reporter tags. BFG-PCA is a high-throughput protein interaction technology to interrogate binary PPIs that exploits clone collections from any species of interest, expanding the scope of PPI assays.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3