Abstract
AbstractThe germline produces gametes that transmit genetic and epigenetic information to the next generation. Maintenance of germ cells and development of gametes require germ granules—well-conserved membraneless and RNA-rich organelles. The composition of germ granules is elusive owing to their dynamic nature and their exclusive expression in the germline. Using C. elegans germ granule, called P granule, as a model system, we employed a proximity-based labeling method in combination with mass spectrometry to comprehensively define its protein components. This set of experiments identified over 200 proteins, many of which contain intrinsically disordered regions. An RNAi-based screen identified factors that are essential for P granule assembly, notably EGGD-1 and EGGD-2, two previously uncharacterized LOTUS-domain proteins. Loss of eggd-1 and eggd-2 results in separation of P granules from nuclear envelope, germline atrophy and reduced fertility. We show that intrinsically disordered regions of EGGD-1 are required to anchor EGGD-1 to the nuclear periphery while its LOTUS domains are required to promote perinuclear localization of P granules. Together, our work expands the repertoire of P granule constituents and provides new insights into the role of LOTUS-domain proteins in germ granule organization.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献