Cdc14 activates autophagy to regulate spindle pole body dynamics during meiosis

Author:

Feng WenzhiORCID,Argüello-Miranda OrlandoORCID,Qian Suhong,Wang FeiORCID

Abstract

SummaryAutophagy, a conserved eukaryotic lysosomal degradation pathway that responds to environmental and cellular cues, is regulated by multiple signaling pathways that oversee cell survival, growth, and proliferation. In budding yeast, autophagy plays an essential role in meiotic exit, although the molecular mechanisms underlying its regulation and cargo selection remain unknown. In this study, we found that autophagy is maintained during meiosis and is upregulated at anaphase I and anaphase II. In addition, we found that cells with higher levels of autophagy during meiosis I and II completed meiosis faster, and that genetically activated autophagy machinery increased sporulation efficiency. Strikingly, our data revealed that Cdc14, a highly conserved phosphatase that counteracts Cdc28 (CDK1), is a meiosis-specific autophagy regulator. At anaphase I and anaphase II, Cdc14 was activated and released from the nucleolus into the cytoplasm, where it dephosphorylated Atg13 to stimulate Atg1 kinase activity and thus autophagy. Importantly, the meiosis-specific spindle pole body (SPB, the yeast centrosome) component (Spo74) was sensitized to autophagy-mediated degradation at anaphase II, upon its dephosphorylation by Cdc14. Together, our findings reveal a meiosis-tailored mechanism of Cdc14 that spatiotemporally guides meiotic autophagy activity to control SPB dynamics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3