Abstract
SummaryAutophagy, a conserved eukaryotic lysosomal degradation pathway that responds to environmental and cellular cues, is regulated by multiple signaling pathways that oversee cell survival, growth, and proliferation. In budding yeast, autophagy plays an essential role in meiotic exit, although the molecular mechanisms underlying its regulation and cargo selection remain unknown. In this study, we found that autophagy is maintained during meiosis and is upregulated at anaphase I and anaphase II. In addition, we found that cells with higher levels of autophagy during meiosis I and II completed meiosis faster, and that genetically activated autophagy machinery increased sporulation efficiency. Strikingly, our data revealed that Cdc14, a highly conserved phosphatase that counteracts Cdc28 (CDK1), is a meiosis-specific autophagy regulator. At anaphase I and anaphase II, Cdc14 was activated and released from the nucleolus into the cytoplasm, where it dephosphorylated Atg13 to stimulate Atg1 kinase activity and thus autophagy. Importantly, the meiosis-specific spindle pole body (SPB, the yeast centrosome) component (Spo74) was sensitized to autophagy-mediated degradation at anaphase II, upon its dephosphorylation by Cdc14. Together, our findings reveal a meiosis-tailored mechanism of Cdc14 that spatiotemporally guides meiotic autophagy activity to control SPB dynamics.
Publisher
Cold Spring Harbor Laboratory