Evolutionary dynamics of asexual hypermutators adapting to a novel environment

Author:

Ho Wei-Chin,Behringer Megan G.,Miller Samuel F.,Gonzales Jadon,Nguyen Amber,Allahwerdy Meriem,Boyer Gwyneth F.,Lynch Michael

Abstract

AbstractHow microbes adapt to a novel environment is a central question in evolutionary biology. While adaptive evolution must be fueled by beneficial mutations, whether higher mutation rates facilitate the rate of adaptive evolution remains unclear. To address this question, we cultured Escherichia coli hypermutating populations, in which a defective methyl-directed mismatch repair pathway causes a 140-fold increase in single-nucleotide mutation rates. In parallel with wild-type E. coli, populations were cultured in tubes containing Luria-Bertani broth, a complex medium known to promote the evolution of subpopulation structure. After 900 days of evolution, in three transfer schemes with different population-size bottlenecks, hypermutators always exhibited similar levels of improved fitness as controls. Fluctuation tests revealed that the mutation rates of hypermutator lines converged evolutionarily on those of wild-type populations, which may have contributed to the absence of fitness differences. Further genome-sequence analysis revealed that, although hypermutator populations have higher rates of genomic evolution, this largely reflects the effects of genetic draft under strong linkage. Despite these linkage effects, the evolved populations exhibit parallelism in fixed mutations, including those potentially related to biofilm formation, transcription regulation, and mutation-rate evolution. Together, these results generally negate the presumed relationship between high mutation rates and high adaptive speed of evolution, providing insight into how clonal adaptation occurs in novel environments.Significance statementWhile mutations are critical source for the adaptation in a new environment, whether or not the elevated mutation rates can empirically lead to the elevated adaptation rates remains unclear, especially when the environment is more heterogenous. To answer this question, we evolved E. coli populations with different starting mutation rates in a complex medium for 900 days and then examined their fitness and genome profiles. In the populations that have a higher starting mutation rate, despite faster genome evolution, their fitness improvement is not significantly faster. Our results reveal that the effect of elevated mutation rates is only very limited, and the mutations accumulated in hypermutators are largely due to linkage effect.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3