Neurotoxins subvert the allosteric activation mechanism of SARM1 to induce neuronal loss

Author:

Wu TongORCID,Zhu Jian,Strickland Amy,Ko Kwang Woo,Sasaki Yo,Dingwall Caitlin,Yamada Yurie,Figley Matthew D,Mao Xianrong,Neiner Alicia,Bloom Joseph,DiAntonio Aaron,Milbrandt Jeffrey

Abstract

SUMMARYSARM1 is an inducible TIR-domain NAD+ hydrolase that mediates pathological axon degeneration. SARM1 is activated by an increased ratio of NMN to NAD+, which competes for binding to an allosteric activating site. When NMN binds, the TIR domain is released from autoinhibition, activating its NAD+ hydrolase activity. The discovery of this allosteric activating site led us to hypothesize that other NAD+-related metabolites might also activate SARM1. Here we show that the nicotinamide analogue 3-acetylpyridine (3-AP), first identified as a neurotoxin in the 1940s, is converted to 3-APMN which activates SARM1 and induces SARM1-dependent NAD+ depletion, axon degeneration and neuronal death. Systemic treatment with 3-AP causes rapid SARM1-dependent death, while local application to peripheral nerve induces SARM1-dependent axon degeneration. We also identify a related pyridine derivative, 2-aminopyridine, as another SARM1-dependent neurotoxin. These findings identify SARM1 as a candidate mediator of environmental neurotoxicity, and furthermore, suggest that SARM1 agonists could be developed into selective agents for neurolytic therapy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3