Characterization of long-term patient-reported symptoms of COVID-19: an analysis of social media data

Author:

Banda Juan M.ORCID,Adderley NicolaORCID,Ahmed Waheed-Ul-RahmanORCID,AlGhoul HebaORCID,Alser OsaidORCID,Alser MuathORCID,Areia CarlosORCID,Cogenur MikailORCID,Fišter KrisitinaORCID,Gombar SaurabhORCID,Huser VojtechORCID,Jonnagaddala JitendraORCID,Lai Lana YHORCID,Leis AngelaORCID,Mateu LourdesORCID,Mayer Miguel AngelORCID,Minty EvanORCID,Morales DanielORCID,Natarajan KarthikORCID,Paredes Roger,Periyakoil Vyjeyanthi S.,Prats-Uribe AlbertORCID,Ross Elsie G.ORCID,Singh GurdasORCID,Subbian VigneshORCID,Vivekanantham AraniORCID,Prieto-Alhambra DanielORCID

Abstract

As the SARS-CoV-2 virus (COVID-19) continues to affect people across the globe, there is limited understanding of the long term implications for infected patients1–3. While some of these patients have documented follow-ups on clinical records, or participate in longitudinal surveys, these datasets are usually designed by clinicians, and not granular enough to understand the natural history or patient experiences of ‘long COVID’. In order to get a complete picture, there is a need to use patient generated data to track the long-term impact of COVID-19 on recovered patients in real time. There is a growing need to meticulously characterize these patients’ experiences, from infection to months post-infection, and with highly granular patient generated data rather than clinician narratives. In this work, we present a longitudinal characterization of post-COVID-19 symptoms using social media data from Twitter. Using a combination of machine learning, natural language processing techniques, and clinician reviews, we mined 296,154 tweets to characterize the post-acute infection course of the disease, creating detailed timelines of symptoms and conditions, and analyzing their symptomatology during a period of over 150 days.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3