Highly efficient SARS-CoV-2 infection of human cardiomyocytes: spike protein-mediated cell fusion and its inhibition

Author:

Navaratnarajah Chanakha K.ORCID,Pease David R.ORCID,Halfmann PeterORCID,Taye BiruhalemORCID,Barkhymer AlisonORCID,Howell Kyle G.,Charlesworth Jon E.ORCID,Christensen Trace A.ORCID,Kawaoka Yoshihiro,Cattaneo RobertoORCID,Schneider Jay W.ORCID, ,

Abstract

AbstractSevere cardiovascular complications can occur in coronavirus disease of 2019 (COVID-19) patients. Cardiac damage is attributed mostly to a bystander effect: the aberrant host response to acute respiratory infection. However, direct infection of cardiac tissue by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also occurs. We examined here the cardiac tropism of SARS-CoV-2 in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) that beat spontaneously. These cardiomyocytes express the angiotensin I converting-enzyme 2 (ACE2) receptor and a subset of the proteases that mediate spike protein cleavage in the lungs, but not transmembrane protease serine 2 (TMPRSS2). Nevertheless, SARS-CoV-2 infection was productive: viral transcripts accounted for about 88% of total mRNA. In the cytoplasm of infected hiPSC-CM, smooth walled exocytic vesicles contained numerous 65-90 nm particles with typical ribonucleocapsid structures, and virus-like particles with knob-like spikes covered the cell surface. To better understand the mechanisms of SARS-CoV-2 spread in hiPSC-CM we engineered an expression vector coding for the spike protein with a monomeric emerald-green fluorescent protein fused to its cytoplasmic tail (S-mEm). Proteolytic processing of S-mEm and the parental spike were equivalent. Live cell imaging tracked spread of S-mEm signal from cell to cell and documented formation of syncytia. A cell-permeable, peptide-based molecule that blocks the catalytic site of furin abolished cell fusion. A spike mutant with the single amino acid change R682S that inactivates the furin cleavage site was fusion inactive. Thus, SARS-CoV-2 can replicate efficiently in hiPSC-CM and furin activation of its spike protein is required for fusion-based cytopathology. This hiPSC-CM platform provides an opportunity for target-based drug discovery in cardiac COVID-19.Author SummaryIt is unclear whether the cardiac complications frequently observed in COVID-19 patients are due exclusively to systemic inflammation and thrombosis. Viral replication has occasionally been confirmed in cardiac tissue, but rigorous analyses are restricted to rare autopsy materials. Moreover, there are few animal models to study cardiovascular complications of coronavirus infections. To overcome these limitations, we developed an in vitro model of SARS-CoV-2 spread in induced pluripotent stem cell-derived cardiomyocytes. In these cells, infection is highly productive: viral transcription levels exceed those documented in permissive transformed cell lines. To better understand the mechanisms of SARS-CoV-2 spread we expressed a fluorescent version of its spike protein that allowed to characterize a fusion-based cytopathic effect. A mutant of the spike protein with a single amino acid mutation in the furin cleavage site lost cytopathic function. The spike protein of the Middle East Respiratory Syndrome (MERS) coronavirus drove cardiomyocyte fusion with slow kinetics, whereas the spike proteins of SARS-CoV and the respiratory coronavirus 229E were inactive. These fusion activities correlated with the level of cardiovascular complications observed in infections with the respective viruses. These data indicate that SARS-CoV-2 has the potential to cause cardiac damage by fusing cardiomyocytes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Myocarditis associated with COVID-19 infection.;Shidnoevropejskij zurnal vnutrisnoi ta simejnoi medicini;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3