3D printed lung on a chip device with a stretchable nanofibrous membrane for modeling ventilator induced lung injury

Author:

Tas SinemORCID,Rehnberg Emil,Bölükbas Deniz A.ORCID,Beech Jason P.ORCID,Kazado Liora Nasi,Svenningsson Isak,Arvidsson Martin,Sandberg Axel,Dahlgren Kajsa A.,Edthofer Alexander,Gustafsson AnnaORCID,Isaksson HannaORCID,Wood Jeffery A.,Tegenfeldt Jonas O.ORCID,Wagner Darcy E.ORCID

Abstract

AbstractMechanical ventilation is often required in patients with pulmonary disease to maintain adequate gas exchange. Despite improved knowledge regarding the risks of over ventilating the lung, ventilator induced lung injury (VILI) remains a major clinical problem due to inhomogeneities within the diseased lung itself as well as the need to increase pressure or volume of oxygen to the lung as a life-saving measure. VILI is characterized by increased physical forces exerted within the lung, which results in cell death, inflammation and long-term fibrotic remodeling. Animal models can be used to study VILI, but it is challenging to distinguish the contributions of individual cell types in such a setup. In vitro models, which allow for controlled stretching of specific lung cell types have emerged as a potential option, but these models and the membranes used in them are unable to recapitulate some key features of the lung such as the 3D nanofibrous structure of the alveolar basement membrane while also allowing for cells to be cultured at an air liquid interface (ALI) and undergo increased mechanical stretch that mimics VILI. Here we develop a lung on a chip device with a nanofibrous synthetic membrane to provide ALI conditions and controllable stretching, including injurious stretching mimicking VILI. The lung on a chip device consists of a thin (i.e. ∼20 µm) stretchable poly(caprolactone) (PCL) nanofibrous membrane placed between two channels fabricated in polydimethylsiloxane (PDMS) using 3D printed molds. We demonstrate that this lung on a chip device can be used to induce mechanotrauma in lung epithelial cells due to cyclic pathophysiologic stretch (∼25%) that mimics clinical VILI. Pathophysiologic stretch induces cell injury and subsequently cell death, which results in loss of the epithelial monolayer, a feature mimicking the early stages of VILI. We also validate the potential of our lung on a chip device to be used to explore cellular pathways known to be altered with mechanical stretch and show that pathophysiologic stretch of lung epithelial cells causes nuclear translocation of the mechanotransducers YAP/TAZ. In conclusion, we show that a breathable lung on a chip device with a nanofibrous membrane can be easily fabricated using 3D printing of the lung on a chip molds and that this model can be used to explore pathomechanisms in mechanically induced lung injury.

Publisher

Cold Spring Harbor Laboratory

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Innovative three-dimensional models for understanding mechanisms underlying lung diseases: powerful tools for translational research;European Respiratory Review;2023-07-26

2. Recent advances in lung-on-a-chip technology for modeling respiratory disease;Bio-Design and Manufacturing;2023-06-13

3. Lung-on-a-Chip Models of the Lung Parenchyma;Advances in Experimental Medicine and Biology;2023

4. Applications of Nanofiber Membranes in Microphysiological Systems;Bulletin of the Karaganda University. "Chemistry" series;2022-09-30

5. Culture and Co-culture of Cells for Multi-organ on a Chip;Microfluidics and Multi Organs on Chip;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3