Author:
Sentosa Jason,Horne Brian,Djutanta Franky,Showkeir Dominic,Rezvani Robert,Hariadi Rizal F.
Abstract
AbstractDNA origami purification is critical in emerging applications of functionalized DNA nanostructures from basic fundamental biophysics, nanorobots to therapeutics. Advances in DNA origami purification have led to the establishment of rate-zonal centrifugation (RZC) as a scalable, high-yield, and contamination-free approach to purifying DNA origami nanostructures. In RZC purification, a linear density gradient is created using viscous agents, such as glycerol and sucrose, to separate molecules based on their mass and shape during high-rpm centrifugation. However, current methods for creating density gradients are typically time-consuming because of their reliance on slow passive diffusion. Here, we built a LEGO gradient mixer to rapidly create a quasi-continuous density gradient with minimal layering of concentrations using simple rotational motion. We found that rotating two layers of different concentrations at an angle can reduce the diffusion time from a few hours to mere minutes. The instrument needed to perform the movement can be constructed from low-cost components, such as Arduino and LEGO Mindstorms pieces, and has comparable efficacy to commercial gradient mixers currently available. Our results demonstrate that the creation of a linear density gradient can be achieved with minimal labor, time, and cost with this machine. With the recent advances in DNA origami production, we anticipate our findings to further improve the viability of scaling up DNA origami purification in grams quantities. Our simple process enables automated large-scale purification of functionalized DNA origami more feasible in resource-constrained settings.
Publisher
Cold Spring Harbor Laboratory