Aberrant enteric neuromuscular system and dysbiosis in amyotrophic lateral sclerosis

Author:

Zhang YongguoORCID,Ogbu Destiny,Garrett ShariORCID,Xia YinglinORCID,Sun JunORCID

Abstract

AbstractBackgroundEmerging evidence has demonstrated that microbiota directly affects the enteric neuron system (ENS) and smooth muscle cell functions via metabolic products or endogenous bacterial components. Amyotrophic Lateral Sclerosis is a neuromuscular disease characterized by the progressive death of motor neurons and muscle atrophy. The GI symptoms in patients were largely ignored or underestimated, especially before the diagnosis of ALS. The relationship between enteric neuromuscular system and microbiome in ALS progression is unknown.MethodsWe performed longitudinal studies on the ENS and microbiome in the ALS human-SOD1G93A transgenic G93A mice. We treated age-matched wild-type and ALS mice with bacterial product butyrate or antibiotics to investigate microbiome and neuromuscular functions. Intestinal motility, microbiome, an ENS marker GFAP, a smooth muscle marker (SMMHC), and human colonoids have been examined. The distribution of human-G93A-SOD1 (Superoxide Dismutase 1) protein was tested as an indicator of ALS progression.ResultsAt 2-month-old before ALS onset, G93A mice had significant lower intestinal motility, decreased grip strength, and reduced time in the rotarod. We observed increased GFAP and decreased SMMHC expression. These changes correlated with consistent increased aggregation of mutated SOD1G93A in the colon, small intestine, and spinal cord. Butyrate and antibiotic treatment showed a significantly longer latency to fall in the rotarod test, reduced SOD1G93A aggregation, and enhanced ENS and muscle function. Feces from 2-month-old SOD1G93A mice significantly enhanced SOD1G93A aggregation in human colonoids transfected with a SOD1G93A-GFP plasmid. Longitudinal studies of microbiome data further showed the altered bacterial community related with autoimmunity (e.g., Clostridium sp. ASF502, Lachnospiraceae bacterium A4), inflammation (e.g., Enterohabdus Muris,), and metabolism (e.g., Desulfovibrio fairfieldensis) at 1- and 2-month-old SOD1G93A mice, suggesting the early microbial contribution to the pathological changes.ConclusionsWe have demonstrated a novel link between microbiome, hSOD1G93A aggregation, and intestinal mobility. Dysbiosis occurred at the early stage of the ALS mice before observed mutated-SOD1 aggregation, slow intestinal motility, and dysfunction of ENS. Manipulating the microbiome improves the muscle performance of SOD1G93A mice. Our study provides insights into fundamentals of intestinal neuromuscular structure/function and microbiome in ALS.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3