Multiscale X-ray study of Bacillus subtilis biofilms reveals interlinked structural hierarchy and elemental heterogeneity

Author:

Azulay David N.,Spaeker Oliver,Ghrayeb Mnar,Wilsch-Bräuninger Michaela,Scoppola Ernesto,Burghammer Manfred,Zizak Ivo,Bertinetti Luca,Politi Yael,Chai LirazORCID

Abstract

AbstractBiofilms are multicellular microbial communities that encase themselves in an extracellular matrix (ECM) of secreted biopolymers and attach to surfaces and interfaces. Bacterial biofilms are detrimental in hospital and industrial settings, but they can be beneficial in agricultural contexts. An essential property of biofilms that grants them with increased survival relative to planktonic cells is phenotypic heterogeneity; the division of the biofilm population into functionally distinct subgroups of cells. Phenotypic heterogeneity in biofilms can be traced to the cellular level, however, the molecular structures and elemental distribution across whole biofilms as well as possible linkages between them remain unexplored. Mapping X-ray diffraction (XRD) across intact biofilms in time and space, we revealed the dominant structural features in Bacillus subtilis biofilms, stemming from matrix components, spores and water. By simultaneously following the X-ray fluorescence (XRF) signal of biofilms and isolated matrix components, we discovered that the ECM preferentially binds calcium ions over other metal ions, specifically, zinc, manganese and iron. These ions, remaining free to flow below macroscopic wrinkles that act as water channels, eventually accumulate and lead to sporulation. The possible link between ECM properties, regulation of metal ion distribution and sporulation across whole intact biofilms unravels the importance of molecular-level heterogeneity in shaping biofilm physiology and development.Significance StatementBiofilms are multicellular soft microbial communities that are able to colonize synthetic surfaces as well as living organisms. To survive sudden environmental changes and efficiently share their common resources, cells in a biofilm divide into subgroups with distinct functions, leading to phenotypic heterogeneity. Here, by studying intact biofilms by synchrotron X-ray diffraction and fluorescence, we revealed correlations between biofilm macroscopic architectural heterogeneity and the spatio-temporal distribution of extracellular matrix, spores, water and metal ions. Our findings demonstrate that biofilm heterogeneity is not only affected by local genetic expression and cellular differentiation, but also by passive effects resulting from the physicochemical properties of the molecules secreted by the cells, leading to differential distribution of nutrients that propagates through macroscopic length scales.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3