Chloride oscillation in pacemaker neurons regulates circadian rhythms through a chloride-sensing WNK kinase signaling cascade

Author:

Schellinger Jeffrey N.,Sun Qifei,Pleinis John M.,An Sung-Wan,Hu Jianrui,Mercenne Gaëlle,Titos Iris,Huang Chou-Long,Rothenfluh AdrianORCID,Rodan Aylin R.ORCID

Abstract

ABSTRACTCentral pacemaker neurons regulate circadian rhythms and undergo diurnal variation in electrical activity in mammals and flies. In mammals, circadian variation in the intracellular chloride concentration of pacemaker neurons has been proposed to influence the response to GABAergic neurotransmission through GABAA receptor chloride channels. However, results have been contradictory, and a recent study demonstrated circadian variation in pacemaker neuron chloride without an effect on GABA response. Therefore, whether and how intracellular chloride regulates circadian rhythms remains controversial. Here, we demonstrate a signaling role for intracellular chloride in the Drosophila ventral lateral (LNv) pacemaker neurons. In control flies, intracellular chloride increases in LNv neurons over the course of the morning. Chloride transport through the sodium-potassium-2-chloride (NKCC) and potassium-chloride (KCC) cotransporters is a major determinant of intracellular chloride concentrations. Drosophila melanogaster with loss-of-function mutations in the NKCC encoded by Ncc69 have abnormally low intracellular chloride six hours after lights on, and a lengthened circadian period. Loss of kcc, which is expected to increase intracellular chloride, suppresses the long-period phenotype of Ncc69 mutant flies. Activation of a chloride-inhibited kinase cascade, consisting of the WNK (With No Lysine (K)) kinase and its downstream substrate, Fray, is necessary and sufficient to prolong period length. Fray activation of an inwardly rectifying potassium channel, Irk1, is also required for the long-period phenotype. These results indicate that the NKCC-dependent rise in intracellular chloride in Drosophila LNv pacemaker neurons restrains WNK-Fray signaling and overactivation of an inwardly rectifying potassium channel to maintain normal circadian period length.

Publisher

Cold Spring Harbor Laboratory

Reference92 articles.

1. Circadian Modulation of the Cl − Equilibrium Potential in the Rat Suprachiasmatic Nuclei;Biomed Res Int,2014

2. The WNK-SPAK/OSR1 pathway: Master regulator of cation-chloride cotransporters

3. Membrane Currents, Gene Expression, and Circadian Clocks;Csh Perspect Biol,2017

4. Simultaneous intracellular chloride and pH measurements using a GFP-based sensor

5. Cell-type specific distribution of chloride transporters in the rat suprachiasmatic nucleus

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3