Multivalency enhances the specificity of Fc-cytokine fusions

Author:

Orcutt-Jahns BrianORCID,Emmel Peter C.ORCID,Snyder Eli M.ORCID,Posner CoriORCID,Carlson Scott M.ORCID,Meyer Aaron S.ORCID

Abstract

AbstractThe common γ-chain receptor cytokines are promising immune therapies due to their central role in coordinating the proliferation and activity of various immune cell populations. One of these cytokines, interleukin (IL)-2, has potential as a therapy in autoimmunity but is limited in effectiveness by its modest specificity toward regulatory T cells (Tregs). Therapeutic ligands are often made dimeric as antibody Fc fusions to confer desirable pharmacokinetic benefits, with under-explored consequences on signaling. Here, we systematically profiled the signaling responses to a panel of wild type and mutein IL-2 molecules in various Fc fusion configurations. We used a tensor-structured dimensionality reduction scheme to decompose the responses of each cell population to each ligand over a range of time points and cytokine concentrations. We found that dimeric muteins are uniquely specific for Tregs at intermediate ligand concentrations. We then compared signaling response across all treatments to a simple, two-step multivalent binding model. Our model was able to predict cellular responses with high accuracy. Bivalent Fc fusions display enhanced specificity and potency for Tregs through avidity effects toward IL-2Rα. We then utilize our model to identify the potential benefits conferred by valency engineering as an additional mechanism for cytokines with optimized therapeutic benefits. In total, these findings represent a comprehensive analysis of how ligand properties, and their consequent effects on surface receptor-ligand interactions, translate to selective activation of immune cell populations. It also identifies a new route toward engineering even more selective therapeutic cytokines.Significance StatementSignaling in off-target immune cells has hindered the effectiveness of IL-2 as an immunotherapeutic. We show that bivalent IL-2 muteins exhibit more regulatory T cell-selective signaling than monovalent forms. This altered selectivity is explained by altered surface receptor-ligand binding kinetics and can be quantitatively predicted using a multivalent binding model. Finally, our model shows that even more selective IL-2 therapies may be developed by designing cytokines in higher valency formats, revealing valency as an unexplored mechanism for engineering specific IL-2 responses.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3