mGluR5 Negative Modulators for Fragile X: Resistance and Persistence

Author:

Stoppel David CORCID,McCamphill Patrick KORCID,Senter Rebecca KORCID,Heynen Arnold JORCID,Bear Mark FORCID

Abstract

AbstractFragile X syndrome (FXS) is caused by silencing of the human FMR1 gene and is the leading monogenic cause of intellectual disability and autism. Abundant preclinical data indicated that negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGluR5) might be efficacious in treating FXS in humans. Initial attempts to translate these findings in clinical trials have failed, but these failures provide the opportunity for new discoveries that will improve future trials. The emergence of acquired treatment resistance (“tolerance”) after chronic administration of mGluR5 NAMs is a potential factor in the lack of success. Here we confirm that FXS model mice display acquired treatment resistance after chronic treatment with the mGluR5 NAM CTEP in three assays commonly examined in the mouse model of FXS: (1) audiogenic seizure susceptibility, (2) sensory cortex hyperexcitability, and (3) hippocampal protein synthesis. Cross-tolerance experiments suggest that the mechanism of treatment resistance likely occurs at signaling nodes downstream of glycogen synthase kinase 3α (GSK3α), but upstream of protein synthesis. The rapid emergence of tolerance to CTEP begs the question of how previous studies showed an improvement in inhibitory avoidance (IA) cognitive performance after chronic treatment. We show here that this observation was likely explained by timely inhibition of mGluR5 during a critical period, as brief CTEP treatment in juvenile mice is sufficient to provide a persistent improvement of IA behavior measured many weeks later. These data will be important to consider when designing future fragile X clinical trials using compounds that target the mGluR5-to-protein synthesis signaling cascade.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3