The metabolic, virulence and antimicrobial resistance profiles of colonizing Streptococcus pneumoniae shift after pneumococcal vaccine introduction in urban Malawi

Author:

Gori Andrea,Obolski Uri,Swarthout Todd D.,Lourenço José,Weight Caroline M.,Cornick Jen,Kamng’ona Arox,Mwalukomo Thandie S.,Msefula Jacquline,Brown Comfort,Maiden Martin C.,French Neil,Gupta Sunetra,Heyderman Robert S.

Abstract

AbstractStreptococcus pneumoniae accounts for at least 300,000 deaths from pneumonia, septicaemia and meningitis among children under 5-years-old worldwide. Protein–polysaccharide conjugate vaccines (PCVs) are highly effective at reducing vaccine serotype disease but emergence of non-vaccine serotypes and persistent nasopharyngeal carriage threaten to undermine this success. Here, we address the hypothesis that following vaccine introduction in high disease and carriage burden settings, adapted pneumococcal genotypes emerge with the potential to facilitate vaccine escape. We show that beyond serotype replacement, there are marked changes in S. pneumoniae carriage population genetics amongst 2804 isolates sampled 4-8 years after the 2011 introduction of PCV-13 in urban Malawi. These changes are characterised by metabolic genotypes with distinct virulence and antimicrobial resistance (AMR) profiles. This included exclusive genes responsible for metabolism and carbohydrate transport, and toxin-antitoxin systems located in an integrative-conjugative region suggestive of horizontal gene transfer. These emergent genotypes were found to have differential growth, haemolytic, or epithelial adhesion/invasion traits that may confer advantage in the nasopharyngeal niche. Together these data show that in the context of PCV13 introduction in a high burden population, there has been a shift in the pneumococcal population dynamics with the emergence of genotypes that have undergone multiple adaptations extending beyond simple serotype replacement, a process that could further undermine vaccine control and promote the spread of AMR.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3