A drug candidate for treating adverse reactions caused by pathogenic antibodies inducible by COVID-19 virus and vaccines

Author:

Wang HuiruORCID,Wu Xiancong,Zhang Yuekai,Chen Qiuchi,Dai Lin,Chen Yuxing,Liu Xiaoling

Abstract

SummaryIn a recent study, we reported that certain anti-spike antibodies of COVID-19 and SARS-CoV viruses can have a pathogenic effect through binding to sick lung epithelium cells and misleading immune responses to attack self-cells. We termed this new pathogenic mechanism “Antibody Dependent Auto-Attack” (ADAA). This study explores a drug candidate for prevention and treatment of such ADAA-based diseases. The drug candidate is a formulation comprising N-acetylneuraminic acid methyl ester (NANA-Me), an analog of N-acetylneuraminic acid. NANA-Me acts through a unique mechanism of action (MOA) which is repairment of the missing sialic acid on sick lung epithelium cells. This MOA can block the antibodies’ binding to sick cells, which are vulnerable to pathogenic antibodies. Our in vivo data showed that the formulation significantly reduced the sickness and deaths caused by pathogenic anti-spike antibodies. Therefore, the formulation has the potential to prevent and treat the serious conditions caused by pathogenic antibodies during a COVID-19 infection. In addition, the formulation has potential to prevent and treat the adverse reactions of COVID-19 vaccines because the vaccines can induce similar antibodies, including pathogenic antibodies. The formulation will be helpful in increasing the safety of the vaccines without reducing the vaccine’s efficacy. Compared to existing antiviral drugs, the formulation has a unique MOA of targeting receptors, broad spectrum of indications, excellent safety profile, resistance to mutations, and can be easily produced.

Publisher

Cold Spring Harbor Laboratory

Reference16 articles.

1. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study;Lancet Lond. Engl,2020

2. Covid-19 — Navigating the Uncharted

3. The lasting misery of coronavirus long-haulers

4. Viral targets for vaccines against COVID-19;Nat. Rev. Immunol,2021

5. COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines;Eur. Rev. Med. Pharmacol. Sci,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3