Rapid speciation and karyotype evolution in Orthoptera

Author:

Palacios-Gimenez Octavio M.ORCID

Abstract

AbstractTo test the hypothesis that high speciation rate in groups is coupled with high rate of karyotype evolution but also that younger groups having a higher rate of karyotypic diversity, I estimated rates of speciation and rates of karyotype evolution in 1,177 species belonging to 26 families in the insect order Orthoptera. Rates of karyotype evolution were estimated using the diploid number and the number of chromosome arms (fundamental number) from published karyotypes of Orthoptera. Rates of speciation were quantified considering the number of species examined karyotypically in each family, the most recent common ancestor of each family and the information about extinction rate. The rate of speciation was strongly correlated with rate of karyotype evolution and the average rates of speciation was nearly ~177 times higher than the background rate estimated for Orthoptera based on acoustic communication using phylogenomic data, as well as 8.4 and 35.6 times higher than the estimated speciation rate in vertebrates and bivalve mollusks respectively, indicating that Orthoptera has evolved very fast at chromosomal level. The findings supported the hypothesis of a high speciation rate in lineages with high rate of chromosomal evolution but there were not evidences that younger groups tended to have higher rate of karyotypic diversity. Furthermore, rates of karyotype evolution most closely fitted the punctuational evolutionary model indicating the existence of long periods of stasis of karyotype change with most karyotype change occurring quickly over short evolutionary times. I discussed genetic drift, divergent selection and meiotic drive as potential biological mechanisms to explain karyotype evolution allowing or impeding for the fixation of chromosomal rearrangements and in turn speciation in orthopterans lineages.

Publisher

Cold Spring Harbor Laboratory

Reference61 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Karyotype evolution in Ronderosia grasshoppers (Orthoptera: Acrididae);Zoological Journal of the Linnean Society;2023-02-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3