A sequence-based global map of regulatory activity for deciphering human genetics

Author:

Chen Kathleen M.ORCID,Wong Aaron K.ORCID,Troyanskaya Olga G.ORCID,Zhou JianORCID

Abstract

AbstractSequence is at the basis of how the genome shapes chromatin organization, regulates gene expression, and impacts traits and diseases. Epigenomic profiling efforts have enabled large-scale identification of regulatory elements, yet we still lack a sequence-based map to systematically identify regulatory activities from any sequence, which is necessary for predicting the effects of any variant on these activities. We address this challenge with Sei, a new framework for integrating human genetics data with sequence information to discover the regulatory basis of traits and diseases. Our framework systematically learns a vocabulary for the regulatory activities of sequences, which we call sequence classes, using a new deep learning model that predicts a compendium of 21,907 chromatin profiles across >1,300 cell lines and tissues, the most comprehensive to-date. Sequence classes allow for a global view of sequence and variant effects by quantifying diverse regulatory activities, such as loss or gain of cell-type-specific enhancer function. We show that sequence class predictions are supported by experimental data, including tissue-specific gene expression, expression QTLs, and evolutionary constraints based on population allele frequencies. Finally, we applied our framework to human genetics data. Sequence classes uniquely provide a non-overlapping partitioning of GWAS heritability by tissue-specific regulatory activity categories, which we use to characterize the regulatory architecture of 47 traits and diseases from UK Biobank. Furthermore, the predicted loss or gain of sequence class activities suggest specific mechanistic hypotheses for individual regulatory pathogenic mutations. We provide this framework as a resource to further elucidate the sequence basis of human health and disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3