Abstract
AbstractThe human general transcription factor TFIID is composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). In eukaryotic cells, TFIID is thought to nucleate RNA polymerase II (Pol II) preinitiation complex formation on all protein coding gene promoters and thus, be crucial for Pol II transcription. TFIID is composed of three lobes, named A, B and C. Structural studies showed that TAF8 forms a histone fold pair with TAF10 in lobe B and participates in connecting lobe B to lobe C. In the present study, we have investigated the requirement of the different regions of TAF8 for in vitro TFIID assembly, and the importance of certain TAF8 regions for mouse embryonic stem cell (ESC) viability. We have identified a TAF8 region, different from the histone fold domain of TAF8, important for assembling with the 5TAF core complex in lobe B, and four regions of TAF8 each individually required for interacting with TAF2 in lobe C. Moreover, we show that the 5TAF coreinteracting TAF8 domain, and the proline rich domain of TAF8 that interacts with TAF2, are both required for mouse embryonic stem cell survival. Thus, our study demonstrates that distinct TAF8 regions involved in connecting lobe B to lobe C are crucial for TFIID function and consequent ESC survival.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献