Abstract
AbstractAcoustic atypicalities in speech production are argued to be potential markers of clinical features in Autism Spectrum Disorder (ASD). A recent meta-analysis highlighted shortcomings in the field, in particular small sample sizes and study heterogeneity (Fusaroli et al., 2017). We showcase a cumulative (i.e., explicitly building on previous studies both conceptually and statistically) yet self-correcting (i.e., critically assessing the impact of cumulative statistical techniques) approach to prosody in ASD to overcome these issues.We relied on the recommendations contained in the meta-analysis to build and analyze a cross-linguistic corpus of multiple speech productions in 77 autistic and 72 neurotypical children and adolescents (>1000 recordings in Danish and US English). We used meta-analytically informed and skeptical priors, with informed priors leading to more generalizable inference. We replicated findings of a minimal cross-linguistically reliable distinctive acoustic profile for ASD (higher pitch and longer pauses) with moderate effect sizes. We identified novel reliable differences between the two groups for normalized amplitude quotient, maxima dispersion quotient, and creakiness. However, the differences were small, and there is likely no one acoustic profile characterizing all autistic individuals. We identified reliable relations of acoustic features with individual differences (age, gender), and clinical features (speech rate and ADOS sub-scores).Besides cumulatively building our understanding of acoustic atypicalities in ASD, the study shows how to use systematic reviews and meta-analyses to guide the design and analysis of follow-up studies. We indicate future directions: larger and more diverse cross-linguistic datasets, focus on heterogeneity, self-critical cumulative approaches and open science.Lay SummaryAutistic individuals are reported to speak in distinctive ways. Distinctive vocal production can affect social interactions and social development and could represent a noninvasive way to support the assessment of ASD. We systematically checked whether acoustic atypicalities highlighted in previous articles could be actually found across multiple recordings and two languages. We find a minimal acoustic profile of ASD: higher pitch, longer pauses, increased hoarseness and creakiness of the voice. However, there is much individual variability (by age, sex, language, and clinical characteristics). This suggests that the search for one common “autistic voice” might be naive and more fine-grained approaches are needed.
Publisher
Cold Spring Harbor Laboratory