Abstract
AbstractStructural variants (SVs) are implicated in the etiology of Mendelian diseases but have been systematically underascertained owing to limitations of existing technology. Recent technological advances such as long-read sequencing (LRS) enable more comprehensive detection of SVs, but approaches for clinical prioritization of candidate SVs are needed. Existing computational approaches do not specifically target LRS data, thereby missing a substantial proportion of candidate SVs, and do not provide a unified computational model for assessing all types of SVs. Structural Variant Annotation and Analysis (SvAnna) assesses all classes of SV and their intersection with transcripts and regulatory sequences in the context of topologically associating domains, relating predicted effects on gene function with clinical phenotype data. We show with a collection of 182 published case reports with pathogenic SVs that SvAnna places over 90% of pathogenic SVs in the top ten ranks. The interpretable prioritizations provided by SvAnna will facilitate the widespread adoption of LRS in diagnostic genomics.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献