Abstract
AbstractInfluenza pandemic poses public health threats annually for lacking vaccine which provides cross-protection against novel and emerging influenza viruses. Combining conserved antigens inducing cross-protective antibody response with epitopes activating cross-protective cytotoxic T-cells would offer an attractive strategy for developing universal vaccine. In this study, we constructed a recombinant protein NMHC consisting of influenza viral conserved epitopes and superantigen fragment. NMHC promoted the mature of bone marrow-derived dendritic cells and induced CD4+ T cells to differentiate into Th1, Th2 and Th17 subtypes. Mice vaccinated with NMHC produced high level of immunoglobulins which cross-bound to HA fragments from six influenza virus subtypes with high antibody titers. Anti-NMHC serum showed potent hemagglutinin inhibition effects to highly divergent group 1 (H1 subtypes) and group 2 (H3 subtype) influenza virus strains. And purified anti-NMHC antibodies could bind to multiple HAs with high affinities. NMHC vaccination effectively protected the mice from infection and lung damage challenged by two subtypes of H1N1 influenza virus. Moreover, NMHC vaccination elicited CD4+ and CD8+ T-cell responses to clear the virus from infected tissue and prevent virus spreading. In conclusion, this study provided proof of concept for triggering both B cells and T cells immune responses against multiple influenza virus infection, and NMHC may be a potential candidate of universal broad-spectrum vaccine for various influenza virus prevention and therapy.
Publisher
Cold Spring Harbor Laboratory