Inferring cell-cell interactions from pseudotime ordering of scRNA-Seq data

Author:

Li Dongshunyi,Velazquez Jeremy J.,Ding Jun,Hislop Joshua,Ebrahimkhani Mo R.,Bar-Joseph Ziv

Abstract

AbstractA major advantage of single cell RNA-Sequencing (scRNA-Seq) data is the ability to reconstruct continuous ordering and trajectories for cells. To date, such ordering was mainly used to group cells and to infer interactions within cells. Here we present TraSig, a computational method for improving the inference of cell-cell interactions in scRNA-Seq studies. Unlike prior methods that only focus on the average expression levels of genes in clusters or cell types, TraSig fully utilizes the dynamic information to identify significant ligand-receptor pairs with similar trajectories, which in turn are used to score interacting cell clusters. We applied TraSig to several scRNA-Seq datasets. As we show, using the ordering information allows TraSig to obtain unique predictions that improve upon those identified by prior methods. Functional experiments validate the ability of TraSig to identify novel signaling interactions that impact vascular development in liver organoid.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3