Abstract
AbstractHuman contrast discrimination performance is limited by transduction nonlinearities and variability of the neural representation (noise). Whereas the nonlinearities have been well-characterised, there is less agreement about the specifics of internal noise. Psychophysical models assume that it impacts late in sensory processing, whereas neuroimaging and intracranial electrophysiology studies suggest that the noise is much earlier. We investigated whether perceptually-relevant internal noise arises in early visual areas or later decision making areas. We recorded EEG and MEG during a two-interval-forced-choice contrast discrimination task and used multivariate pattern analysis to decode target/non-target and selected/non-selected intervals from evoked responses. We found that perceptual decisions could be decoded from both EEG and MEG signals, even when the stimuli in both intervals were physically identical. Above-chance decision classification started <100ms after stimulus onset, suggesting that neural noise affects sensory signals early in the visual pathway. Classification accuracy increased over time, peaking at >500ms. Applying multivariate analysis to separate anatomically-defined brain regions in MEG source space, we found that occipital regions were informative early on but then information spreads forwards across parietal and frontal regions. This is consistent with neural noise affecting sensory processing at multiple stages of perceptual decision making. We suggest how early sensory noise might be resolved with Birdsall’s linearisation, in which a dominant noise source obscures subsequent nonlinearities, to allow the visual system to preserve the wide dynamic range of early areas whilst still benefitting from contrast-invariance at later stages. A preprint of this work is available at: http://dx.doi.org/10.1101/364612
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献