A unified encyclopedia of human functional DNA elements through fully automated annotation of 164 human cell types

Author:

Libbrecht Maxwell W.ORCID,Rodriguez Oscar,Weng Zhiping,Bilmes Jeffrey A.,Hoffman Michael M.,Noble William S.ORCID

Abstract

AbstractSemi-automated genome annotation methods such as Segway enable understanding of chromatin activity. Here we present chromatin state annotations of 164 human cell types using 1,615 genomics data sets. To produce these annotations, we developed a fully-automated annotation strategy in which we train separate unsupervised annotation models on each cell type and use a machine learning classifier to automate the state interpretation step. Using these annotations, we developed a measure of the importance of each genomic position called the “conservation-associated activity score,” which we use to aggregate information across cell types into a multi-cell type view. The aggregated conservation-associated activity score provides a measure of importance directly attributable to a specific activity in a specific set of cell types. In contrast to evolutionary conservation, this measure is not biased to detect only elements shared with related species. Using the conservation-associated activity score, we combined all our annotations into a single, cell type-agnostic encyclopedia that catalogs all human transcriptional and regulatory elements, enabling easy and intuitive interpretation of the effect of genome variants on phenotype, such as in disease-associated, evolutionarily conserved or positively selected loci. These resources, including cell type-specific annotations, encyclopedia, and a visualization server, are available at http://noble.gs.washington.edu/proj/encyclopedia.Author SummaryGenome annotation algorithms are an effective class of tools for understanding the function of the genome. These algorithms take as input a set of genome-wide measurements about the activity at each base pair in a given tissue, such as where a given protein is binding or how accessible the DNA is to being read by a protein. The genome is then partitioned and each segment is assigned a label such that positions with the same label exhibit similar patterns in the input data. Such annotations are widely used for many applications, such as to understand the mechanism of impact of a given genetic variant. Here we present, to our knowledge, the most comprehensive set of genome annotations created so far, encompassing 164 human cell types and including 1,615 genomics data sets. These comprehensive annotations are made possible by a strategy that automates the previous interpretation step. Furthermore, we present several methodological innovations that make these genome annotations more useful.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3