The receptor PTPRU is a redox sensitive pseudophosphatase

Author:

Hay Iain M.ORCID,Fearnley Gareth W.ORCID,Rios Pablo,Köhn Maja,Sharpe Hayley J.ORCID,Deane Janet E.ORCID

Abstract

ABSTRACTThe dynamic regulation of protein tyrosine phosphorylation is a critical feature of intercellular communication and is regulated by the actions of kinases and phosphatases. The receptor-linked protein tyrosine phosphatases (RPTPs) are key signaling molecules that possess an extracellular domain and intracellular phosphatase domains. Most human RPTPs have tandem intracellular tyrosine phosphatase domains: a catalytically active membrane proximal (D1) domain; and a membrane distal (D2) inactive “pseudophosphatase” domain. The receptor PTPRU plays a role in development, multiple cancers and has been implicated in the dephosphorylation of cell adhesion proteins. However, PTPRU has a non-canonical D1 domain containing several sequence variations in key catalytic loops that suggest it may function using a mechanism distinct from related RPTPs. Here, we demonstrate through biochemical and structural studies that PTPRU is unique amongst the RPTPs in possessing two pseudophosphatase domains. We show that PTPRU-D1 displays no detectable catalytic activity against a range of phosphorylated substrates and determine that this is due to substantial disorder in the substrate-binding pocket as well as rearrangement of the catalytic loop such that the active site cysteine is occluded. We also show that this cysteine can form an intramolecular disulfide bond with a vicinal “backdoor” cysteine. Further, we demonstrate that the PTPRU D2 domain can recruit substrates of related RPTPs suggesting that this pseudophosphatase functions by competing with active phosphatases for the binding of substrates involved in cell adhesion. Therefore, PTPRU is abona-fidepseudophosphatase and its functional role in cell signaling is via a non-catalytic mechanism.SIGNIFICANCE STATEMENTProtein tyrosine phosphorylation is a key post-translational modification required for cellular communication that is dynamically regulated by the activities of tyrosine kinases and phosphatases. Receptor tyrosine phosphatases (RPTPs) possess an extracellular receptor domain and intracellular phosphatase domains. We show that PTPRU is a non-canonical RPTP devoid of catalytic activity and demonstrate that this is due to multiple structural rearrangements. Despite this, PTPRU retains the capacity to bind the substrates of related phosphatases suggesting that the non-catalytic function of this pseudophosphatase is to compete with active phosphatases for the binding of substrates. Such pseudoenzymes represent an exciting and growing area of research with implications as key regulators of signaling networks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3