A highly prevalent and pervasive densovirus discovered among sea stars from the North American Atlantic Coast

Author:

Jackson Elliot W.ORCID,Pepe-Ranney Charles,Johnson Mitchell R.,Distel Daniel L.ORCID,Hewson IanORCID

Abstract

AbstractViral metagenomes prepared from tissues from Forbes’ sea star (Asterias forbesi) led to the discovery of a complete genome of a novel sea star densovirus (AfaDV). The genome organization of AfaDV and phylogenetic analysis place this virus among the Ambidensovirus genus in the subfamily Densoviridae, family Parvoviridae. AfaDV shares 78% nucleotide pairwise identity to the sea star associated densovirus (SSaDV), previously described as the putative causative agent of Sea Star Wasting Syndrome among sea stars from the Northwest Pacific. SSaDV was not found in specimens collected in this study, and the discovery of AfaDV might explain previous reports of SSaDV among sea stars from the Atlantic Coast. A qPCR assay was designed to assess tissue tropism, host specificity, and prevalence of AfaDV among wild populations of sea stars at five locations on the North American Atlantic Coast. AfaDV was detected in all three common sea star species (Asterias forbesi, Asterias rubens, and Henricia sp.) found in the region and was highly prevalent (80-100% of individuals tested, n=134), among populations collected at disparate sites 7 years apart. AfaDV was detected in the body wall, gonads, and pyloric caeca (digestive gland) of specimens but was not detected in their coelomic fluid. A significant difference in viral load was found between tissue types with the pyloric caeca having the highest viral load suggesting it is the primary site of viral replication in the animal. Further investigation of Asterias forbesi gonad tissue found germline cells (oocytes) to be virus positive suggesting a potential route of vertical transmission. Taken together, these observations show that the presence AfaDV is not an indicator of Sea Star Wasting Syndrome because AfaDV is a common constituent of these animals’ microbiome, regardless of health. These results broaden the understanding of echinoderm densoviruses outside the context of disease that suggest these viruses might form commensal or mutualistic relationships with their hosts.

Publisher

Cold Spring Harbor Laboratory

Reference44 articles.

1. Bergoin M , Tijssen P. 2010. Densoviruses: a Highly Diverse Group. Insect Virol 59.

2. Densoviruses for Control and Genetic Manipulation of Mosquitoes

3. Virose d’un type inhabituel chez le lépidoptère Galleria mellonella L;Rev Zool Agric Appl,1964

4. Epizootiology, distribution and the impact on international trade of two penaeid shrimp viruses in the Americas;Rev Sci Tech Int Off Epizoot,1996

5. The Acheta domesticus Densovirus, Isolated from the European House Cricket, Has Evolved an Expression Strategy Unique among Parvoviruses

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3