Embryonic geometry underlies phenotypic variation in decanalized conditions

Author:

Huang A.ORCID,Saunders T. E.

Abstract

AbstractDuring development, many mutations cause increased variation in phenotypic outcomes, a phenomenon termed decanalization. Such variations can often be attributed to genetic and environmental perturbations. However, phenotypic discordance remains even in isogenic model organisms raised in homogeneous environments. To understand the mechanisms underlying phenotypic variation, we used as a model the highly precise anterior-posterior (AP) patterning of the early Drosophila embryo. We decanalized the system by depleting the maternal bcd product and found that in contrast to the highly scaled patterning in the wild-type, the segmentation gene boundaries shift away from the scaled positions according to the total embryonic length. Embryonic geometry is hence a key factor predetermining patterning outcomes in such decanalized conditions. Embryonic geometry was also found to predict individual patterning outcomes under bcd overexpression, another decanalizing condition. Further analysis of the gene regulatory network acting downstream of the morphogen identified vulnerable points in the networks due to limitations in the available physical space.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3