Filamin-A susceptibility to calpain-mediated cleavage as a marker of dynamic conformational changes in intact platelets

Author:

Buitrago Lorena,Coller Barry S.

Abstract

ABSTRACTFilamin-A (FlnA), an actin-binding protein that organizes the actin cytoskeleton and mechanically links transmembrane glycoproteins to the cytoskeleton, associates with platelet receptors integrin αIIbβ3, glycoprotein-Ib (GPIb), and integrin α2β1. Fibrinogen, von Willebrand Factor (vWF) and collagen, binding to these receptors mechanically connect the extracellular matrix to the cytoskeleton. Here we identified that under standardized conditions, platelet activation and ligand binding to αIIbβ3, GPIb, or α2β1, generates reproducible patterns of FlnA cleavage after platelet lysis. We exploited this novel assay to study the impact of ligand binding and receptor activation on the platelet cytoskeleton. We identified that: i) the FlnA modification that renders it cleavable by calpain after platelet lysis, requires both ligand binding and either internal force (e.g; clot retraction) or external forces (e.g; stirring and aggregating), ii) FlnA modification depends on actin polymerization downstream of integrin αIIbβ3 and integrin α2β1, but not downstream of GPIb signaling, iii) FlnA modification is reversible in time when platelets are activated with convulxin (Cvx), collagen, von Willebrand factor (vWF) or thrombin receptor activating peptide (T6), and this reversibility correlates with platelet dissagregation, iv) in contrast to the reversible nature of platelet aggregation and FlnA modification by activation with Cvx, collagen, ristocetin or T6, when platelets are activated by thrombin the platelet do not disaggregate and FlnA remains cleavable. Our data demonstrate that αIIbβ3, α2β1 and GPIb can each exert tension on the cytoskeleton by virtue of binding ligand under conditions of shear. We further identified a unique role for αIIbβ3-fibrin interactions in creating sustained cytoskeletal tension, with implications for thrombus stability and clot retraction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3