Sex specific molecular responses of Quick-To-Court in Indian malarial vector Anopheles culicifacies: conflict of mating and/or blood feeding?

Author:

De Tanwee Das,Sharma Punita,Rawal Charu,Kumari Seena,Tavetiya Sanjay,Yadav Jyoti,Hasija Yasha,Dixit Rajnikant

Abstract

AbstractUnderstanding the molecular basis of mosquito behavioral complexity is central to the design of novel molecular tool to fight against their vector borne diseases. Although, olfactory system play important role to guide and manage many behavioral co-ordinates including feeding, mating, breeding etc., but the sex specific regulation of olfactory responses remains unanswered. From our ongoing transcriptomic data annotation of blood fed adult female olfactory tissue of A. culicifacies mosquito, we identified a 383 bp long unique transcript encoding Drosophila homolog of Quick-To-Court protein, previously shown to regulate the courtship behavior in adult male Drosophila. A comprehensive in silico analysis predicts Ac-qtc is 1536 bp long single copy gene encoding 511 AA long protein, having high degree of conservation with other insect homolog. Age dependent increased expression of putative Ac-qtc in the naïve mosquitoes correlates the maturation of olfactory system, necessary to meet sex specific conflicting demand of mating (mate finding) vs. host-seeking behavioral responses. Though, 16-18 hour of starvation did not altered Ac-qtc expression in both the sexes, however blood feeding significantly modulated its response in the adult female mosquitoes, confirming that it may not be involved in sugar feeding associated behavioural regulation. Finally, a behavioural-cum-molecular assay indicated that natural dysregulation of Ac-qtc in late evening may promotes key mating event of successful insemination process. We hypothesize that Ac-qtc may play unique role to meet and manage the sex specific conflicting demand of mosquito courtship behaviour and/or blood feeding behaviour in the adult female mosquitoes. A molecular mechanism elucidation may provide new knowledge to consider Ac-qtc as a key molecular target for mosquito borne disease management.

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3