aCPSF1 controlled archaeal transcription termination: a prototypical eukaryotic model

Author:

Yue Lei,Li Jie,Zhang Bing,Qi Lei,Zhao Fangqing,Li Lingyan,Dong Xiuzhu

Abstract

AbstractTranscription termination defines RNA 3′-ends and guarantees programmed transcriptomes, thus is an essential biological process for life. However, transcription termination mechanisms remain almost unknown in Archaea. Here reported the first general transcription termination factor of Archaea, the conserved ribonuclease aCPSF1, and elucidated its 3′-end cleavage dependent termination mechanism. Depletion of Mmp-aCPSF1 in a methanoarchaeon Methanococcus maripaludis caused a genome-wide transcription termination defect and overall transcriptome chaos, and cold-sensitive growth. Transcript-3′end-sequencing (Term-seq) revealed transcriptions mostly terminated downstream of a uridine-rich terminator motif, where Mmp-aCPSF1 performed cleavage. The endoribonuclease activity was determined essential to terminate transcription in vivo as well. Through super-resolution photoactivated localization microscopy imaging, co-immunoprecipitation, and chromatin immunoprecipitation, we demonstrated that Mmp-aCPSF1 localizes within nucleoid and associates with RNAP and chromosomes. aCPSF1 appears to co-evolve with archaeal RNAPs, and two distant orthologs each from Lokiarchaeota and Thaumarchaeota could replace Mmp-aCPSF1 to termination transcription. Thus, aCPSF1 dependent termination mechanism could be universally employed in Archaea, including Lokiarchaeota, one supposed archaeal ancestor of Eukaryotes. Therefore, the reported aCPSF1 cleavage-dependent termination mode not only hints an archetype of Eukaryotic 3′-end processing/cleavage triggered RNAP II termination, but also would shed lights on understanding the complex eukaryotic termination based on the simplified archaeal model.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3