NK cells force cytomegalovirus to use hematopoietic cells and immune evasion for dissemination after mucosal infection

Author:

Zhang ShunchuanORCID,Grey FinnORCID,Snyder Christopher M.ORCID

Abstract

AbstractCytomegalovirus (CMV) infects most people in the world and causes clinically important disease in immune compromised and immune immature individuals. How the virus disseminates from the initial site of infection is poorly understood. We used an innovative approach, involving insertion of target sites for the haematopoietic specific miRNA miR-142-3p into an essential viral gene in murine cytomegalovirus. This virus was unable to disseminate to the salivary gland following intranasal infection, demonstrating a strict need for hematopoietic cells for dissemination from the natural site of infection. Viral immune evasion genes that modulate MHC-I expression and NKG2D activation were also required in this setting, as MCMV lacking these genes exhibited impaired dissemination of the viral genome to the salivary gland, and there was no detectable viral replication in the salivary gland. Depletion of T cells rescued the replication of this evasion-deficient virus in the salivary gland. Surprisingly however, the early dissemination to the salivary gland of this evasion-deficient virus, could be rescued by depletion of NK cells, but not T cells. These data are the first to show a profound loss of MCMV fitness in the absence of its MHC-I evasion genes and suggest that they protect the virus from NK cells during hematopoietic dissemination to the salivary gland, where they continued to need the three evasion genes to avoid T cell responses. Remarkably, we found that depletion of NK cells also freed the virus from the need to infect hematopoietic cells in order to reach the salivary gland. Thus, our data show that MCMV adapts to NK cell pressure after intranasal infection by using hematopoietic cells for dissemination while immune evasion genes protect the virus from NK cells during dissemination and from T cells within mucosal tissues.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3