Assays to Measure Insecticide Toxicity and Insecticide Resistance in Mosquitoes

Author:

Liu Nannan,Wang Yifan,Li Ting

Abstract

Mosquitoes’ resistance to commonly used insecticides is now widespread, hampering control efforts and leading to substantial increases in human illness and mortality rates in many areas of the world. Insecticide bioassays are quantitative methodologies used to determine the dose–response relationship of insects to insecticides and to evaluate the susceptibility or resistance of mosquitoes to specific insecticides. They are frequently used to monitor the development of insecticide resistance in mosquitoes for both field resistance diagnoses (surveillance assays), in which the ability of mosquitoes to survive exposure to a standard dose or concentration of an insecticide is measured, and laboratory bioassays, in which responses to insecticides are tested in parallel populations of resistant (field) populations and laboratory susceptible strains using serial doses or concentrations. Metabolic detoxification, in which insecticides are metabolized by enzymes, including cytochrome P450s, hydrolases, and glutathione-S-transferases (GSTs), to become more polar and less toxic, is one resistance mechanism. Piperonyl butoxide (PBO),S,S,S-tributyl phosphorotrithioate (DEF), and diethyl maleate (DEM) are the inhibitors of P450s, hydrolases, and GSTs, respectively, and act as synergists for rapidly testing the involvement of these enzymes in insecticide resistance. Such synergistic assays are used to identify the detoxification enzyme that leads to resistance to a specific insecticide. This introduction and its associated protocols present a detailed discussion of appropriate methodologies and procedures for laboratory larval, adult, and synergistic bioassays and introduces the field surveillance tests used to monitor insecticide resistance as recommended by the latest World Health Organization (WHO) and U.S. Centers for Disease Control (CDC) guidelines.

Publisher

Cold Spring Harbor Laboratory

Subject

General Biochemistry, Genetics and Molecular Biology

Reference25 articles.

1. Agresti A . 2015. Foundations of linear and generalized linear models. Wiley, New York.

2. Aldrich JH , Nelson FD . 1984. Linear probability, logit, and probit models, Vol. 45. Sage Publications, Los Angeles.

3. Independent Selection of Multiple Mechanisms for Pyrethroid Resistance in Guatemalan Anopheles albimanus (Diptera: Culicidae)

4. Oral and Topical Insecticide Response Bioassays and Associated Statistical Analyses Used Commonly in Veterinary and Medical Entomology

5. Centers for Disease Control and Prevention (U.S.). 2019. CONUS manual for evaluating insecticide resistance in mosquitoes using the CDC bottle bioassay kit (updated 2019). https://www.cdc.gov/mosquitoes/pdfs/CONUS-508.pdf [accessed June 27, 2021].

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3