Abstract
The ability to manipulate the bacterial genome is an obligatory premise for the study of gene function and regulation in bacterial cells. The λ red recombineering technique allows modification of chromosomal sequences with base-pair precision without the need of intermediate molecular cloning steps. Initially conceived to construct insertion mutants, the technique lends itself to a wide variety of applications including the creation of point mutants, seamless deletions, reporter, and epitope tag fusions and chromosomal rearrangements. Here, we introduce some of the most common implementations of the method.
Publisher
Cold Spring Harbor Laboratory
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献