Abstract
ABSTRACTMedium chain esters are potential drop-in biofuels and versatile chemicals. Currently, these esters are largely produced by the conventional chemical process that uses harsh operating conditions and requires high energy input. Alternatively, the microbial conversion route has recently emerged as a promising platform for sustainable and renewable ester production. The ester biosynthesis pathways can utilize either esterases/lipases or alcohol acyltransferase (AAT), but the AAT-dependent pathway is more thermodynamically favorable in aqueous fermentation environment. Even though cellulolytic thermophiles such as Clostridium thermocellum harboring the engineered AAT-dependent pathway can directly convert lignocellulosic biomass into esters, the production is currently not efficient and requires optimization. One potential bottleneck is the ester degradation caused by the endogenous carbohydrate esterases (CEs) whose functional roles are poorly understood. In this study, we developed a simple, high-throughput colorimetric assay to screen the endogenous esterases of C. thermocellum responsible for ester hydrolysis. We identified, characterized, and disrupted two critical endogenous esterases that significantly contributes to isobutyl acetate degradation in C. thermocellum. We demonstrated that not only did the engineered esterase-deficient strain alleviate ester hydrolysis but also helped improve isobutyl acetate production while not affecting its robust metabolism for effective cellulose assimilation.IMPORTANCECarbohydrate esterases (CEs) are important enzymes in the deconstruction of lignocellulosic biomass by the cellulolytic thermophile C. thermocellum, yet some are potential ester degraders in a microbial ester production system. Currently, the functional roles of CEs for hydrolyzing medium chain esters and negatively affecting the ester microbial biosynthesis are not well understood. This study discovered novel CEs responsible for isobutyl acetate degradation in C. thermocellum and hence identified one of the critical bottlenecks for direct conversion of lignocellulosic biomass into esters.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献