Molecular mechanism of the chitinolytic monocopper peroxygenase reaction

Author:

Bissaro BastienORCID,Streit BennettORCID,Isaksen Ingvild,Eijsink Vincent G.H.ORCID,Beckham Gregg T.ORCID,DuBois JenniferORCID,Røhr Åsmund K.ORCID

Abstract

ABSTRACTLytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of monocopper enzymes, broadly distributed across the Tree of Life. We recently reported that LPMOs can use H2O2 as an oxidant, revealing a novel reaction pathway. Here, we aimed to elucidate the H2O2-mediated reaction mechanism with experimental and computational approaches. In silico studies suggest that a network of hydrogen bonds, involving both the enzyme and the substrate, brings H2O2 into a strained reactive conformation, and guides the derived hydroxyl radical towards formation of a copper-oxyl intermediate. The initial H2O2 homolytic cleavage and subsequent hydrogen atom abstraction from chitin by the copper-oxyl intermediate are suggested to be the main energy barriers. Under single turnover conditions, stopped-flow fluorimetry demonstrates that LPMO-Cu(II) reduction to Cu(I) is a fast process compared to the re-oxidation reactions. We found that re-oxidation of LPMO-Cu(I) is 2000-fold faster with H2O2 than with O2, the latter being several orders of magnitude slower than rates reported for other monooxygenases. In agreement with the notion of ternary complex formation, when chitin is added, re-oxidation by H2O2 is accelerated whereas that by O2 slows. Simulations indicated that Glu60, a highly-conserved residue, gates the access to the confined active site and constrains H2O2 during catalysis, and Glu60 mutations significantly decreased the enzyme performance. By providing molecular and kinetic insights into the peroxygenase activity of chitinolytic LPMOs, this study will aid the development of applications of enzymatic and synthetic copper catalysis and contribute to understanding pathogenesis, notably chitinolytic plant defenses against fungi and insects.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3