Single-cell characterization of step-wise acquisition of carboplatin resistance in ovarian cancer

Author:

Wenzel Alexander T.,Champa Devora,Venkatesh Hrishi,Sun Si,Tsai Cheng-Yu,Mesirov Jill P.,Bui Jack D.,Howell Stephen B.,Harismendy OlivierORCID

Abstract

AbstractAcquired resistance to carboplatin is a major obstacle to the cure of ovarian cancer, but its molecular underpinnings are still poorly understood and often inconsistent between in vitro modeling studies. Using sequential treatment cycles, multiple clones derived from a single ovarian cancer cell reached similar levels of resistance. The resistant clones showed significant transcriptional heterogeneity, with shared repression of cell cycle processes and induction of IFNα response signaling, and subsequent pharmacological inhibition of the JAK/STAT pathway led to a general increase in carboplatin sensitivity. Gene-expression based virtual synchronization of 26,772 single cells from 2 treatment steps and 4 resistant clones was used to evaluate the activity of Hallmark gene sets in proliferative (P) and quiescent (Q) phases. Two behaviors were associated with resistance: 1) broad repression in the P phase observed in all clones in early resistant steps and 2) prevalent induction in Q phase observed in the late treatment step of one clone. Furthermore, the induction of IFNα response in P phase or Wnt-signaling in Q phase were observed in distinct resistant clones. These observations suggest a model of resistance hysteresis, where functional alterations of the P and Q phase states affect the dynamics of the successive transitions between drug exposure and recovery, and prompts for a precise monitoring of single-cell states to develop more effective schedules for, or combination of, chemotherapy treatments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3