Parallel evolution of frog antimicrobial peptides produces identical conformations but subtly distinct membrane and antibacterial activities

Author:

Manzo Giorgia,Ferguson Philip M.,Hind Charlotte,Clifford Melanie,Gustilo V. Benjamin,Ali Hind,Bansal Sukhvinder S.,Bui Tam T.,Drake Alex F.,Atkinson R. Andrew,Sutton Mark J.,Lorenz Christian D.,Phoenix David A.,Mason A. JamesORCID

Abstract

ABSTRACTFrogs such as Rana temporaria and Litoria aurea secrete numerous closely related antimicrobial peptides (AMPs) as an effective chemical dermal defence. Despite the high similarity in physical properties and preference for adopting secondary amphipathic, α-helix conformations in membrane mimicking milieu, their spectrum of activity and potency often varies considerably. Damage or penetration of the bacterial plasma membrane is considered essential for AMP activity and hence distinguishing apparently similar AMPs according to their behaviour in, and effects on, model membranes will inform understanding of species specific effective antimicrobial mechanisms. Here we use a combination of molecular dynamics simulations, circular dichroism and patch-clamp to investigate the basis for differing anti-bacterial activities in representative AMPs from each species; temporin L and aurein 2.5. Despite adopting near identical, α-helix conformations in the steady-state in a variety of membrane models, these two AMPs can be distinguished both in vitro and in silico based on their dynamic interactions with model membranes; the greater conformational flexibility and the higher amplitude channel conductance induced offers a rationale for the greater potency and broader spectrum of activity of temporin L over aurein 2.5. Specific contributions from individual residues are identified that define the mechanisms of action of each AMP. Our findings suggest AMPs in frogs are examples of parallel evolution whose utility is based on apparently similar but subtly distinct mechanisms of action.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3