Author:
Bogdanow Boris,Eichelbaum Katrin,Sadewasser Anne,Wang Xi,Husic Immanuel,Paki Katharina,Hergeselle Martha,Vetter Barbara,Hou Jingyi,Chen Wei,Wiebusch Lüder,Meyer Irmtraud M.,Wolff Thorsten,Selbach Matthias
Abstract
SUMMARYA century ago, influenza A virus (IAV) infection caused the 1918 flu pandemic and killed an estimated 20-40 million people. Pandemic IAV outbreaks occur when strains from animal reservoirs acquire the ability to infect and spread among humans. The molecular details of this species barrier are incompletely understood. We combined metabolic pulse labeling and quantitative shotgun proteomics to globally monitor protein synthesis upon infection of human cells with a human-and a bird-adapted IAV strain. While production of host proteins was remarkably similar, we observed striking differences in the kinetics of viral protein synthesis over the course of infection. Most importantly, the matrix protein M1 was inefficiently produced by the bird-adapted strain at later stages. We show that impaired production of M1 from bird-adapted strains is caused by increased splicing of the M segment RNA to alternative isoforms. Experiments with reporter constructs and recombinant influenza viruses revealed that strain-specific M segment splicing is controlled by the 3’ splice site and functionally important for permissive infection. Independentin silicoevidence shows that avian-adapted M segments have evolved different conserved RNA structure features than human-adapted sequences. Thus, our data identifies M segment RNA splicing as a viral determinant of host range.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献