Gαq Mediates Clozapine Effects in Caenorhabditis elegans

Author:

Hao Limin,Tong Yongguang,Harrington Kristin,O’Neill Jessica L.,Sheikholeslami Afsaneh,Wang Xin,Freedman Jonathan H.,Cohen Bruce M.,Buttner Edgar A.

Abstract

ABSTRACTClozapine binds and has significant effects on multiple neurotransmitter receptors, notably including some dopamine receptors. Downstream of these receptors, clozapine affects the balance of Gi− and Gq-dependent second-messenger signaling. We used Caenorhabiditis elegans as a genetic model to study further how clozapine affects both dopamine receptors and downstream Gq mediated signaling. Four of six worm dopamine receptor orthologs, dop-1, dop-2, dop-4, and dop-5 produced resistance to clozapine induced developmental delay when mutated, suggesting that both type I and type II dopamine receptors mediate the behavioral effects of clozapine in C. elegans. Beyond these receptors, reduction of function of one of the G proteins, egl-30 (Gαq), produced greatly increased susceptibility to clozapine. Gαq has multiple known downstream effects. Among these is the control of acetylcholine release, which is in balance with monoamines in the human brain and is another target of clozapine and other antipsychotic drugs. We tested for downstream effects on acetylcholine at the neuromuscular junction upon clozapine treatment but found no evidence for effects of clozapine. In contrast, modulation of Gαq upstream leads to worms that are either more resistant or more susceptible to clozapine, emphasizing the importance of Gαq proteins in mediating effects of clozapine. A genetic screen for suppressors of egl-30 recovered eight mutants. By characterizing the behavioral effects of these mutants, we found that clozapine exerts its function on development by affecting Gαq signaling through control of the pharyngeal pumping rate. A whole-genome sequencing technique was utilized and identified a list of candidate genes for these suppressor mutations. Further characterization of these mutants promises the discovery of novel components participating in Gαq signaling and a better understanding of the mechanisms of action of clozapine.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3