Abstract
AbstractThe Integrated Stress Response (ISR) is a conserved eukaryotic translational and transcriptional program implicated in mammalian metabolism, memory and immunity. The ISR is mediated by stress-induced phosphorylation of translation initiation factor 2 (eIF2) that attenuates the guanine nucleotide exchange factor eIF2B. A chemical inhibitor of the ISR, ISRIB, a bis-O-arylglycolamide, reverses the attenuation of eIF2B by phosphorylated eIF2, protecting mice from neurodegeneration and traumatic brain injury. We report on a cryo-electron microscopy-based structure of ISRIB-bound human eIF2B revealing an ISRIB-binding pocket at the interface between the β and δ regulatory subunits. CRISPR/Cas9 mutagenesis of residues lining this pocket altered the hierarchical cellular response to ISRIB congeners in vivo and ISRIB-binding in vitro, thus providing chemogenetic support for the functional relevance of ISRIB binding at a distance from known eIF2-eIF2B interaction sites. Our findings point to a hitherto unexpected allosteric site in the eIF2B decamer exploited by ISRIB to regulate translation.
Publisher
Cold Spring Harbor Laboratory