Developmental plasticity of hearing sensitivity in red-eared slider Trachemys scripta elegans

Author:

Wang JichaoORCID,Li Handong,Wang Tongliang,Chen Bo,Cui Jianguo,Shi HaitaoORCID

Abstract

AbstractDevelopmental plasticity of hearing sensitivity (DPHS) has been verified in some groups of vertebrates. Turtles face a trade-off between terrestrial and aquatic hearing in different acoustic environments throughout ontogeny. However, how chelonian hearing sensitivity changes throughout ontogeny is still unclear. To verify DPHS in turtles, auditory brainstem responses (ABR) were compared using hearing thresholds and latencies in female red-eared slider (Trachemys scripta elegans) aged 1 week, 1 month, 1 year, and 5 years, and the results showed hearing sensitivity bandwidths of approximately 200–1100, 200–1100, 200–1300, and 200–1400 Hz, respectively. The lowest threshold sensitivity was approximately 600□Hz. Below 600 Hz, ABR threshold decreased rapidly with increasing age (1 week to 1 year), with significant differences between age groups, but no significant difference between the 1- and 5-year age groups (stimulus frequency, 200–600 Hz). Above 600 Hz, ABR threshold was the lowest in the 5-year age group. These findings show that aging was accompanied by hearing sensitivity changes, suggesting rapid, frequency-segmented development during ontogeny. This variability in hearing sensitivity differs from that reported in other vertebrates, and allows adaptation to acoustically distinct environments throughout ontogeny. Our findings further elucidate the developmental patterns of the vertebrate auditory system.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

1. Gerhardt HC , Huber F. 2002 Acoustic communication in insects and frogs: Common problems and diverse solutions. Chicago: University of Chicago Press.

2. Köppl C , Manley GA , Popper AN , Fay RR. 2014 Insights from comparative hearing research. New York: Springer.

3. Suthers RA , Fitch WT , Fay RR , Popper AN. 2016 Vertebrate Sound Production and Acoustic Communication. Heidelberg: Springer.

4. Werner L. , Fay R.R. , Popper A.N. 2011 Human auditory development. Springer Science & Business Media.

5. Rubel EW , Popper AN , Fay RR (eds). 2012. Development of the auditory system. Springer Science & Business Media.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3